Martin Stobbelaar Spatial Databases
StudentlD: 12131617 01.March 2025

Exercise 13: Database backend for a WebGIS

Festival selection

While the company Vudstork Entertainment Ltd is specialized on festivals for medium sized cities,
they got a request from the city of Munich to create a mobile app for the Oktoberfest, as they were
amazed by other similar applications done by the company. | got the task to build the spatial
database around the app.

Data preparation

To get started, | first look for already existing data. As there is no official spatial data for the
Oktoberfest to download, | downloaded the area of the Theresienwiese from OSM. A lot of tents
and streets are already mapped and have to be only cleaned and converted to the correct
geometry type.

Next to already existing | manually mapped everything else in QGIS, with the help of a map from
the Oktoberfest that can be seeninfigure 1 on the left. The right map is the manually mapped area
in QGIS.

}) Okioberfest L
MUNCHEN .
i o
: . - 5 £ ,,’/ 1' e S =
3t S : ‘. 7
= 5 { 4
@
'
erstraBe o Golhtrsnaee /-/ :
resienwiese
e sus ﬂ -
m}ﬂ]@ . = Perre,
3
2]

] LCBo EN mosoN
MmO = m oma

‘SCHAUSTELLERSTRASSE

2l
mf

%

ome

w Laain sus 8 sraBe -
9 B B . icke a2 Y 5
B ¢ B\ - . AR SAY i\ -3 P

Figure 1.: Map of the Oktoberfest, downloaded from Oktoberfest.de (left), manually mapped illustration in QGIS (right)

List of entities

There are several entities on the Oktoberfest, some of them have a physical location e.g. a tent,
whilst other are something that happens at a location (e.g. events). In the following table 1 is a list
of all entities that exist in my database.

Entities Relationship (if existing)

Tents Is part of locations

Small tents Is part of locations

Rides Is part of locations

Toilets Is part of locations

ATMs Is part of locations

Areas Contain physical entities- not observable
Events Take place in/at tents/rides or other locations
Visitor Has certain location at a specific time
Entrances/Exits Is part of locations

Locations List of all locations

All entities with geometries and spatial information are uploaded to the new database with the
methods learned in one of the first exercises using the Database Manager in QGIS. All other
entities are created as tables directly using SQL in pgAdmin.

The “locations” table contains all locations on the festival. Although no tents, rides etc. exist more
then once at the same location, this would make that possible. Its also easier to search for events.

Graphical overview of database

In the following figure 2 (also attached in the zip file), the physical data model of the database can
be seen. This graphical overview has been created with the ERD tool in pgAdmin.

The database is quite simple as except for the location table there aren’t any obvious relations.
The columns and their datatypes are set in a way that they allow specific spatial and temporal
queries from the visitors perspective. There are multiple visitors in the “visitor” table, allowing
queries from varying positions and daytimes. This makes showcasing the database a little bit
easier.

As can be seen in the graphical overview; tents, small tents and rides have columns that give
information on the opening times. As it is assumed that they open every day to the same hours
during the festival, they have open- and closing times with the datatype “time without time zone”.
Events that take place have open and closing time with the datatype “timestamp without time
zone” as they only last a few hours.

Visitors also have a column called timestamp with the datatype “timestamp without time zone”,
to simulate a visit during a specific time.

4 public
5 twilettes ®
. . - ublic
toilette_id serial @r
S B evems
Z location_id integer e B evem
© event_id integer
© @ public | name character varying
(o) 4 public 3 locations f start_time timestamp witho
& public [entrance_exit —|— location_id integer + uttime zone
[small_tents entrance_id serial B location_type text f end_time timestamp withou
- - - ttime zone
smalltents_id integer & |ocation_id integer >07 g name text i ——
- - 406 £ location_id integer
A : 0 geom geometry
[name character varying o = Y
f open_time time without tim [0} ® ®
e zone
4 public < public <& public
fi close_time time without tim - ® - -
B am B tems 5 rides
e zone — — —
i . <& public R e e
f capacity_uilization double atm_id serial - tents_id integer rides_id serial
i i e 5 visitor A < A)
precision Z location_id integer ! — { name character varying { name character varying

£ location_id integer

user_id integer

geom geometry

oo

capacity_utilization double

precision

f capcity_rate double precisio
n

| name character varying f open_time time without tim f type character varying
public R X . e =
@ timestamp timestamp witho & zons] open_time time without tim
3 ereas A

areas_id serial
[l name character varying

£ location_id integer

Figure 2.: Physical data model of the database

ut time zone

close_time time without tim

e zone

4 location_id integer

e zone

close_time time without tim

e zone

#P location_id integer

Example queries

All queries are also stored as SQL files and contained in the ZIP file. Following are some scenarios
of visitors needing specific information and the query that retrieves the information.

Scenario 1:

Anna likes to see the festive start of the Oktoberfest and is wondering in which tent it takes place,
however she does not want to walk more than 500m from her current position. Also has she
forgotten when exactly the event starts. The following query (figure 3) lists all events near her, that
take place on the same day as her current time and that have not ended yet.

¢§ | oktoberfest/martin@Local Server v =
m Ay A Yy Nolimt ~ @ p kv A @AY B % =
Query Query History
1 ~ SELECT
2 e.name AS event_name, e.start_time, e.end_time,
1.name AS location_name,
4 1.geom AS event_location,
ST_Distance(l.geom, v.geom) AS distance_to_event,
v.geom AS my_pestiion, e.start_time - v.timestamp AS time_until_start
8 FROM events AS e
JOIN
1 (SELECT geom, name, timestamp
11 FROM visitor
12 WHERE name = 'Anna')
13 AS v
14 ON e.start_time::DATE = v.timestamp::DATE
15 JOIN locations AS 1
il ON e.location_id = 1l.location_id
17 WHERE ST_DwWithin(l.geom, v.geom, 500)
18 AND e.end_time > v.timestamp
ORDER BY distance_to_event;
Data Output Messages Notifications
S BvBOv@d & &2~ s Showingrows: 1to 1| #* | Page No!
event_name start_time end_time location_name 8 0 event_location dlm:am:emmﬂanta o my_postiion time_until_start
character varying timestamp without time zone timestamp without time zone text geometry double precision geometry 'interval
1 Wiesnanstich 2025-09-20 12:00:00 2025-09-20 12:30:00 Schottenhamel-Festhalle 0103000020E8640.. 314.1906195103091 (0107000020E86.. 00:30:00

Figure 3.: Query to find events within 500m

The query result is tailored towards the person needing the information.

Scenario 2:

Maria wants to enjoy some beers in of the tents at the Oktoberfest. She likes it crowded, but not
so crowded that finding a place is impossible (hence the capacity utilization between 65 and 91).
She does not mind walking a little bit, however its always nice to know if nearby options are
meeting her criteria. Figure 4 shows the query as well as the output table.

In an actual application, this result should also be available as a map based output, where the
event location and the visitors location is highlighted, while all other info should be visible as well.
An example how that should look like, can be seen in figure 5: a styled map, created with QGIS
after loading the query result as a new layer. Tents are styled differently, depending of the distance
towards the visitor.

¢ | oktoberfest/martin@Local Server v B

[—— e LRS- EAeERE e o
Query Query History 7 sc
1~ SELECT

2 t.tents_id, t.name, t.capacity utilization, t.open_time, t.close_time,
3 l.geom AS tent_location,

4 ST_Distance(l.geom, v.geom) AS distance,

5 v.geom AS my_position,

6 t.close_time - v.TIMESTAMP::time AS time_until_closed

7 FROM

8 tents AS t

9 JOIN

10 locations AS 1

11 ON l.location_id = t.location_id

12 JOIN

13 (SELECT = FROM VISITOR WHERE name = 'Maria’) AS v

14 ON TRUE

15 WHERE

16 t.close_time > v.timestamp::time

17 AND

18 t.capacity_utilization > 65

19 AND t.capacity_utilization < 91
20 ORDER BY
21 distance;

Data Output Messages Notifications

S B vl va & 8|~ s Showing rows: 110 9| * PageNo: 1
pm,udﬁmm 7 QWMQM 7 ﬁqhoe_wm 7 & uwnt_lowuwﬁdlwm » un'u_poolmﬁ MLdmdﬁ
integer ‘character varying double precision time without time zone time without time zone geometry double precision geometry interval

1 5 Léwenbrdu Festzelt 852 10:00:00 22:30:00 0103000020E86400.. 80.53616199252876 0101000020E86400.. 04:16:00

2 4 Pschorr-Brauros! 68.9 10:00:00 22:20:00 0102000020E26400... 108.7147105016427 0101000020E86400... 04:16:00

3 3 Augustiner Festha.. 754 10:00:00 22:30:00 0103000020E86400... 197.0523655818342 0101000020E86400.. 04:16:00

4 13 Kéfer Wiesn-Scha .. 842 10:00:00 23:59:00 0103000020E86400.. 280.1687686028593 0101000020E86400 05:45:00

& 10 Hofbrau-Festzeit 777 10:00:00 22:30:00 0103000020E86400... 347.1224296387185 0101000020E86400.. 04:16:00

6 1 Fischer-Vroni 69.9 10:00:00 22:20:00 0103000020E26400... 418.2265093403836 0101000020E86400.. 04:16:00

7 17 Museumszelt 69.2 10:00:00 22:30:00 0103000020E86400.. 427 488157554644 0101000020E86400.. 04:16:00

8 18 Schiitzenlisl 85 10:00:00 22:30:00 0103000020E86400.. 443.0187453981075 0101000020E86400 04:16:00

9 11 Marstall Festzeit 90.5 10:00:00 22:30:00 0103000020E86400... 493.3022265020534 0101000020E86400.. 04:16:00

Figure 4.: Query to find tents with a capacity utilization between 65 and 91

v| @ Maria
- || 7 open_tents

v [l &1-182

v [] 162-204

vl [] 204- 404

vl [] 404 - 434

v [232- 493
v oktoberfest_paths
v/ O locations
v| [] locations

Figure 5.: Example map created in QGIS. Showing Marias postion and highlighted tents

Scenario 3:

Josef wants to get information on where to go with his grandkids before going to the Oktoberfest
so he is well prepared. He likes the sound of the “Oide Wiesn”, the more traditional part of the
Oktoberfest. He wants to know which family friendly rides (ride type: “Familiengaudi”) are
available in this area of the festival.

Figure 6 shows the query which gives Josef the results he wants.

¢ | oktoberfest/martin@Local Server v | &

m Ry /A Y+ Nomt ~ @ » A 0O % % = @

Query Query History

1 ~ SELECT DISTINCT

2 r.name, r.type, r.open_time, r.close_time, r.capcity_rate,

3 l.geom AS ride_location,

4 a.name AS area_name

5 FROM

6 rides AS r

a8 JOIN

9 locations AS 1

10 ON l.lecation_id = r.location_id

11 JOIN

12 locations AS a

13 ON a.location_id IN (SELECT location_id FROM areas WHERE name = 'Oide Wiesn')

14 WHERE

15 r.type = 'Familiengaudi’

16 AND ST_Intersects(l.geom, a.geom);

17

Data Output Messages Notifications

= BvBOvE & &2 A~ o Showing row
name a8 ty| a open_time a8 close_time a8 capcity_rate a 0o ride_location a8 area, rnan'ma
character varying character varying time without time zone time without time zone double precision geometry text

1 Ballonfahrt Familiengaudi 09:00:00 20:00:00 0.9 0103000020E86400.. Qide Wiesn

2 Dschungelcamp Familiengaudi 09:00:00 20:00:00 323 0103000020E86400.. Qide Wiezn

3 Fahrt zur Halle Familiengaudi 09:00:00 20:00:00 748 0103000020E86400.. Qide Wiesn

4 Kettenkarusell Familiengaudi 09:00:00 20:00:00 71 0103000020E86400.. Qide Wiezn

5 Parkour Familiengaudi 09:00:00 20:00:00 147 0103000020E86400.. Oide Wiesn

Figure 6.: Retrieving specific rides in specific area

Other possible queries:

Figure 7 and 8 show further possible queries that could be useful for visitors. Of course a lot of
different queries can be executed, the possibilities are endless. These queries are just a selection
of things that might be useful for gathering information about the festival.

All queries can be altered dynamically towards other visitors or locations to retrieve the desired
output.

¢& oktoberfest/martin@Local Server v B
mBa- /sy Y~ Nolimt ~ ®m » b~ 0@ @~ % B =
Query Query History

~ SELECT

*

ST_DISTANCE(Ll.geom,v.geom) as DISTANCE

Wk

4 FROM

5 locations as 1

6 JOIN

7 (SELECT * FROM visitor WHERE name = 'Herbert') as v
8 ON TRUE

9 WHERE st_distance (l.geom,v.geom) < 108

10 AND NOT l.location_type = 'areas'

11 ORDER by DISTANCE;
12
Data Output Messages Notifications

S EvODvE 5 &~ 50

Iocm}oan location_type name ’ o geom a distance :

[PK] integer text text ‘geometry double precision
1 105 toileties [null] 0101000020E864.. 24.66270626915486
2 68 rides Hangover - The Tower 0103000020E864 29 66482071178158
3 14 fents Fischer-Vroni 0103000020E864.. 48.04792960404956
4 15 ftents Ochsenbraterei 0103000020E864.. 56.28462682895253
5 75 rides Bayern Tower 0103000020E864.. 60.0051645035312
6 112 atm [nun] 0101000020E864 64.07852875323925
7 64 rides Flohzirkus 0103000020E864.. 72.04658466557359
8 113 atm [nun] 0101000020E864 76.12209371521847
9 107 toilettes [nui] 0101000020E864.. 79.87311722258224
10 106 toilettes [null] 0101000020E864.. 85.16077172037225
1 67 rides Breakdancer 0103000020E864.. B5.48057846049545
12 71 | rides Big Pictures 2.0 0103000020EB64. 85.67782552644063
13 6 entrance_exit [nun] 0101000020E864.. 88.64814027069541

Figure 7.:Query to find all physical locations within certain distance of another location (in this case a visitor)

¢ | oktoberfest/martin@Local Server v =
m Ay /A Y Nolmit ~ @ p BbvyA OB~ B B = O

Query Query History

~ SELECT
1.geom as location,l.location_type,

3 t.geom as tent_location,

4 ST_DISTANCE(l.geom,t.geom) as dist_from_tent

5 FROM

6 locations as 1

7 JOIN

8 locations as t

ON t.location_id IN (SELECT location_id FROM tents WHERE name = 'Ochsenbraterei')
10 WHERE st_distance (l.geom,t.geom) < 50

11 AND l.location_type IN ('toilettes','atm')

12 ORDER by dist_from_tent;

Data Output Messages Notifications
S B v0Ove 8 8~ s
locatiol I location dis
o mn.nuumuypaa ']mnu a:zUmm_namﬁ

geometry @ text geometry double precision
1 0101000020E864... toilettes 0103000020E86400 10.58613437527116
2 0101000020E864.. atm 0103000020E86400 11.49172582121331

Figure 8.: Query to find all physical locations within certain distance of another location (in this case a visitor)

