
Martin Stobbelaar Spatial Databases
StudentID: 12131617 01.March 2025

Exercise 13: Database backend for a WebGIS
Festival selection
While the company Vudstork Entertainment Ltd is specialized on festivals for medium sized cities,
they got a request from the city of Munich to create a mobile app for the Oktoberfest, as they were
amazed by other similar applications done by the company. I got the task to build the spatial
database around the app.

Data preparation
To get started, I first look for already existing data. As there is no official spatial data for the
Oktoberfest to download, I downloaded the area of the Theresienwiese from OSM. A lot of tents
and streets are already mapped and have to be only cleaned and converted to the correct
geometry type.

Next to already existing I manually mapped everything else in QGIS, with the help of a map from
the Oktoberfest that can be seen in figure 1 on the left. The right map is the manually mapped area
in QGIS.

Figure 1.: Map of the Oktoberfest, downloaded from Oktoberfest.de (left), manually mapped illustration in QGIS (right)

List of entities
There are several entities on the Oktoberfest, some of them have a physical location e.g. a tent,
whilst other are something that happens at a location (e.g. events). In the following table 1 is a list
of all entities that exist in my database.

Entities Relationship (if existing)
Tents Is part of locations
Small tents Is part of locations
Rides Is part of locations
Toilets Is part of locations
ATMs Is part of locations
Areas Contain physical entities- not observable
Events Take place in/at tents/rides or other locations
Visitor Has certain location at a specific time
Entrances/Exits Is part of locations
Locations List of all locations

All entities with geometries and spatial information are uploaded to the new database with the
methods learned in one of the first exercises using the Database Manager in QGIS. All other
entities are created as tables directly using SQL in pgAdmin.

The “locations” table contains all locations on the festival. Although no tents, rides etc. exist more
then once at the same location, this would make that possible. Its also easier to search for events.

Graphical overview of database
In the following figure 2 (also attached in the zip file), the physical data model of the database can
be seen. This graphical overview has been created with the ERD tool in pgAdmin.

The database is quite simple as except for the location table there aren’t any obvious relations.
The columns and their datatypes are set in a way that they allow specific spatial and temporal
queries from the visitors perspective. There are multiple visitors in the “visitor” table, allowing
queries from varying positions and daytimes. This makes showcasing the database a little bit
easier.

As can be seen in the graphical overview; tents, small tents and rides have columns that give
information on the opening times. As it is assumed that they open every day to the same hours
during the festival, they have open- and closing times with the datatype “time without time zone”.
Events that take place have open and closing time with the datatype “timestamp without time
zone” as they only last a few hours.

Visitors also have a column called timestamp with the datatype “timestamp without time zone”,
to simulate a visit during a specific time.

Figure 2.: Physical data model of the database

Example queries
All queries are also stored as SQL files and contained in the ZIP file. Following are some scenarios
of visitors needing specific information and the query that retrieves the information.

Scenario 1:

Anna likes to see the festive start of the Oktoberfest and is wondering in which tent it takes place,
however she does not want to walk more than 500m from her current position. Also has she
forgotten when exactly the event starts. The following query (figure 3) lists all events near her, that
take place on the same day as her current time and that have not ended yet.

Figure 3.: Query to find events within 500m

The query result is tailored towards the person needing the information.

Scenario 2:

Maria wants to enjoy some beers in of the tents at the Oktoberfest. She likes it crowded, but not
so crowded that finding a place is impossible (hence the capacity utilization between 65 and 91).
She does not mind walking a little bit, however its always nice to know if nearby options are
meeting her criteria. Figure 4 shows the query as well as the output table.

In an actual application, this result should also be available as a map based output, where the
event location and the visitors location is highlighted, while all other info should be visible as well.
An example how that should look like, can be seen in figure 5: a styled map, created with QGIS
after loading the query result as a new layer. Tents are styled differently, depending of the distance
towards the visitor.

Figure 4.: Query to find tents with a capacity utilization between 65 and 91

Figure 5.: Example map created in QGIS. Showing Marias postion and highlighted tents

 Scenario 3:

Josef wants to get information on where to go with his grandkids before going to the Oktoberfest
so he is well prepared. He likes the sound of the “Oide Wiesn”, the more traditional part of the
Oktoberfest. He wants to know which family friendly rides (ride type: “Familiengaudi”) are
available in this area of the festival.

Figure 6 shows the query which gives Josef the results he wants.

Figure 6.: Retrieving specific rides in specific area

Other possible queries:

Figure 7 and 8 show further possible queries that could be useful for visitors. Of course a lot of
different queries can be executed, the possibilities are endless. These queries are just a selection
of things that might be useful for gathering information about the festival.

All queries can be altered dynamically towards other visitors or locations to retrieve the desired
output.

Figure 7.:Query to find all physical locations within certain distance of another location (in this case a visitor)

Figure 8.: Query to find all physical locations within certain distance of another location (in this case a visitor)

